N 70 339879
NASA CR109795
ON THE RIGHT WEAK SOLUTION
OF THE CAUCHY PROBLEM
FOR A QUASILINEAR EQUATION OF FIRST ORDER

by
Eberhard Hopf*

Consider the quasilinear equation of first

order

(1) ug + f(u)x = 0

with t,x,u being real scalars and f(u) being a
given smooth function on (-« ,«) ., Wanted is a solu-
tion u=u(t,x),t >0, that is prescribed for

t = 0 . The solution can be found by means of the
classical method of characteristics. Such a smooth

solution exists, in general, only in some neighbor-
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hood of the initial line ¢t =0, u = uo(x) . Under
wide assumptions about f{(u) , however, the solution
can be continued beyond this neighbourhood. The con-
tinued solution has, in general, lines of discontinu-
ity in analogy to the shock waves of compressible
fluid flow. It is only a weak solution of the Cauchy
problem for (1). The property of being a weak solu-
tion does not, however, characterize the function
u(t , x) . The Cauchy problem for (1) has always more
than one weak solution if f(u) is not linear in
(=2, ®) . It must be remembered that the particular
weak solution u(t, x) spoken of above is originally

thought of as

(2) u(t,x) = Limu(t,x;¢)
ol

where u(t,x:¢) is the solution of the parabolic

second order equation (e > 0)
(3) u, + f(u), =eu,.
with the same initial data uo(x) at t=0. This is,

of course, a complicated description of the particu-

lar weak solution u(x,t) , and it is an important
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and apparently not completely solved problem to
characterize this solution u(x,t) in substantially
simpler ways. The present note contains another
approach to this question.

In order to justify the subsequent procedure
we begin by quoting known results about the Cauchy
problem for (3) and about the limit (2). The solu-
tion u(t,x:e) of (3) with given initial values
u(x) at t =0 exists if f(u) is "sufficiently
smooth" and if wu_(x) is bounded, |u_(x)] S M, and
smooth, uj(x) bounded:; the solution u(t, x) has
the same bound M (see [2], end of page 277). If
u,(x) is bounded and monotone the functions
u(t,x:e) converge in the mean, as ¢ - 0 , to a
function u(t, x) in any finite interval of any
straight line t = to Z 0 (see [2], theorem 1).

Let h(u) € C'(~», ) and let

I(u) = jh(u)du s

(4)
Flu) = f h(u)df(u) = J h(u)f’(u)du .

On multiplying the differential equation (3) on both

sides by h(u) we may write the resulting equation



I

I(u), + F(u), = e(uh(u)), - eh’(w)us

(5)

e:I(u)Xx - e:h"'(u)ux2 .

In this equation u = u(t,x;e) is supposed to be
substituted. On multiplying (5) on both sides by a
test function o(t,x) in the open half plane

t >0 (function with compact support in this half
plane and of class C’ ) and on integrating over this

half plane we obtain (after some integrations by part)

[ Tx(u)o, + P(u)o, |dtdx = -¢ [] 2(u)e, atax
£50 >0

(6)
+¢ ” h '(u)uxg odtdx
t>0

with w=u(t,x;e) . Nowlet e >0 go to zero.
From the convergence u(t,x:e) -+ u(t, x) as ex-
plained above and from lu(t,x;e)S M it is easily

inferred that

(7) I(u(t, x5¢e)) » I(u(t, x))
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holds also in the mean on every finite interval on

any line t = const; the same holds for F . The inte-
gral on the left of (6) stays uniformly bounded as

e » 0 . Consequently, the integral on the left,

u = u(t,x;e) , tends toward the same integral with

u = u(t,x) . The first term on the right is easily
seen to go to zero. The second term is always =2 O

as long as h’(u)w(t,x) 2 0 holds for all ¢t ,x,u .
Hence we conclude:

The limit function u(t,x) satisfies the

inequality

(8) [Tt z(u)o, + F(u)o Jatax 2 0
t>0

whenever

(8%) h'(w)o(t,x) 2 O

holds for all t,x u .
Condition (8‘) if satisfied ¢ h =1 or /s
h =<1 and if ® is an arbitrary test function in

the open half plane t > 0 . In this case there holds

(9) I(u) =2u , F(u) = xf(u) ,



-6~

respectively. The result is that the integral (8)
with I =u, FP=f is both 2 0 and £ 0 . There-
fore the statement made above includes the statement

that u(t,x) is a weak solution of (1):

(10) I [ [uoy +£(u)o Jdtdx = 0
£50

holds for every test function o(t,x) in the half
plane t > 0 .

In order to see more clearly what the proper-
ty (8), (8’) means we consider the case where the
solution u(t,x) is of class €’ in the t-x-plane,
except on a finite number of smooth lines of discon-

tinuity along each of which it has limits u",u+ on

say in this case that u is of class PC’, Let the

test function o be of the form

o(t,x) = ¥(t)x(8) , &€ = x-x(%) ,

where x = x(t) is the equation of the discontinuity

line and where y , with e > 0 , is given by
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1 - lel/ze, lel < ¢

(11) x(g) =
0, |el

Y
®

¥(t) is a nonnegative test function which is first
kept fixed and later made to approach a &-function
around a given value of t . The integral (8) now

becomes the sum of the two integrals

(22)  [[[-zwx+P)]x"(2) ¥ (t) atae

and

(13) [T z(u)x (e) ¥ (t) atae .

By virtue of (8) the sum is 2 0 . From (11) it fol-
lows easily that (13) = 0 as e = O . (12) equals

() [{2 [( I(u)k +F(u) )de - % (-I(u)i+F(u))ae}e(t)at
(t) -e 0

and it is clear that (14) converges to

(25) [{(z(uh)-1(u"))x- (Fu™)-Fu™))}e(t)as 20 .
(t)
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(15) holds (see (8')) ir
(15") h'(u) 2 0 and ¥(t) 20 .

If now Y(t) 1is made to concentrate upon a single

value t (15) becomes simply

(16) (z(u") - I(u))x-(P(u*) -F(u")) 2 0,

and this holds whenever

(167) h{u) non-decreasing.

(It is easy to see that condition (15’) may be relaxed
to (167).)

If the whole argument is applied to (10) in place of
(8) there results the wellknown formula

(17) (ut-u))x - (e(ut)-£@7)) = 0.

Altogether we have the following result:
The inequality

(18) (1(x*") - 1(w)) 2L _ (mut)mur)) 2 0
\ u+_u- ;
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holds whenever (167) holds.

The meaning of this inequality becomes clear

when the special increasing functions

0, u<u
(19) h(w) Bl °

r
-
e
v

&

are used. In this case there follows from ()

0, u<u
I(u) = , P(u) =
u-u. , U= U £(u) - £(u ), u 2 U .

0 u<u
? o)

+

We suppose that u_ lies in the interval v, u

o
and we distinguish between the two cases

cx)u'guo.ﬁu"' Byui Su_gu .

In either case the simple calculations furnish the

result that--we write u in place of u -~

20 £(u’) - £(u) < £(u’) - £(u7)
(20) at-u at -y

holds. Geometrically this means in the case o) that

the curve v = f(u) lies above the chord (the chord
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subtended between (u“ ,f(u")) and <u+, f(u+))) in
the interval (u',,u+) , and in the case p) that it
lies below the chord in the interval (u™,u”) .

This is precisely the condition E introduced
by 0. A. Oleinik [3]. It would be of considerable
interest to prove the uniqueness of the weak solution
of the Cauchy problem for (1) under the additional
condition (8), (8%).
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